facebook

Private teachers in Douala

Find your perfect private tutor in Douala.
Learn with our teachers at home or in their studio.

33 private teachers in Douala

0 teachers in my wish list
|
+

33 private teachers in Douala

Trusted teacher: Digital suites courses I - General A numeric sequence is an application from N to R. • Bounded sequence A sequence (Un) is bounded if there exists a real A such that, for all n, Un ≤ A. We say that A is an upper bound of the series. A sequence (Un) is reduced if there exists a real number B such that, for all n, B ≤ one. One says that B is a lower bound of the sequence. A sequence is said to be bounded if it is both increased and reduced, that is to say if it exists M such that | Un | ≤ M for all n. • Convergent suite The sequence (Un) is convergent towards l ∈ R if: ∀ε> 0 ∃n0 ∈ N ∀n ≥ n0 | un − l | ≤ ε. A sequence which is not convergent is said to be divergent. When it exists, the limit of a sequence is unique. The deletion of a finite number of terms does not modify the nature of the sequence, nor its possible limit. Any convergent sequence is bounded. An unbounded sequence cannot therefore be convergent. • Infinite limits We say that the following (un) diverges Towards + ∞ if: ∀A> 0 ∃n0∈N ∀n ≥ n0 Un≥A Towards −∞ if: ∀A> 0 ∃n0∈N ∀n≤ n0 Un≤A. • Known limitations For k> 1, α> 0, β> 0 II Operations on suites • Algebraic operations If (un) and (vn) converge towards l and l ', then the sequences (un + vn), (λun) and (unvn) respectively converge towards l + l', ll and ll '. If (un) tends to 0 and if (vn) is bounded, then the sequence (unvn) tends to 0. • Order relation If (un) and (vn) are convergent sequences such that we have a ≤ vn for n≥n0, then we have: Attention, no analogous theorem for strict inequalities. • Framing theorem If, from a certain rank, un ≤xn≤ vn and if (un) and (vn) converge towards the same limit l, then the sequence (xn) is convergent towards l. III monotonous suites • Definitions The sequence (un) is increasing if un + 1≥un for all n; decreasing if un + 1≤un for all n; stationary if un + 1 = one for all n. • Convergence Any sequence of increasing and increasing reals converges. Any decreasing and underestimating sequence of reals converges. If a sequence is increasing and not bounded, it diverges towards + ∞. • Adjacent suites The sequences (un) and (vn) are adjacent if: (a) is increasing; (vn) is decreasing; If two sequences are adjacent, they converge and have the same limit. If (un) increasing, (vn) decreasing and un≤vn for all n, then they converge to l1 and l2. It remains to show that l1 = l2 so that they are adjacent. IV Extracted suites • Definition and properties - The sequence (vn) is said to be extracted from the sequence (un) if there exists a map φ of N in N, strictly increasing, such that vn = uφ (n). We also say that (vn) is a subsequence of (un). - If (un) converges to l, any subsequence also converges to l. If sequences extracted from (un) all converge to the same limit l, we can conclude that (un) converges to l if all un is a term of one of the extracted sequences studied. For example, if (u2n) and (u2n + 1) converge to l, then (un) converges to l. • Bolzano-Weierstrass theorem From any bounded sequence of reals, we can extract a convergent subsequence. V Suites de Cauchy • Definition A sequence (un) is Cauchy if, for any positive ε, there exists a natural integer n0 for which, whatever the integers p and q greater than or equal to n0, we have | up − uq | <ε. Be careful, p and q are not related. • Property A sequence of real numbers, or of complexes, converges if, and only if, it is Cauchy SPECIAL SUITES I Arithmetic and geometric sequences • Arithmetic sequences A sequence (un) is arithmetic of reason r if: ∀ n∈N un + 1 = un + r General term: un = u0 + nr. Sum of the first n terms: • Geometric sequences A sequence (un) is geometric of reason q ≠ 0 if: ∀ n∈N un + 1 = qun. General term: un = u0qn Sum of the first n terms: II Recurring suites • Linear recurrent sequences of order 2: - Such a sequence is determined by a relation of the type: (1) ∀ n∈N aUn + 2 + bUn + 1 + cUn = 0 with a ≠ 0 and c ≠ 0 and knowledge of the first two terms u0 and u1. The set of real sequences which satisfy the relation (1) is a vector space of dimension 2. We seek a basis by solving the characteristic equation: ar2 + br + c = 0 (E) - Complex cases a, b, c If ∆ ≠ 0, (E) has two distinct roots r1 and r2. Any sequence satisfying (1) is then like : where K1 and K2 are constants which we then express as a function of u0 and u1. If ∆ = 0, (E) has a double root r0 = (- b) / 2a. Any sequence satisfying (1) is then type: - Case a, b, c real If ∆> 0 or ∆ = 0, the form of the solutions is not modified. If ∆ <0, (E) has two conjugate complex roots r1 = α + iβ and r2 = α − iβ that we write in trigonometric form r1 = ρeiθ and r2 = ρe-iθ Any sequence satisfying (1) is then of the type: • Recurrent sequences un + 1 = f (un) - To study such a sequence, we first determine an interval I containing all the following values. - Possible limit If (un) converges to l and if f is continuous to l, then f (l) = l. - Increasing case f If f is increasing over I, then the sequence (un) is monotonic. The comparison of u0 and u1 makes it possible to know if it is increasing or decreasing. - Decreasing case f If f is decreasing over I, then the sequences (u2n) and (u2n + 1) are monotonic and of contrary Made by LEON
Math · Physics · Computer science
Showing results 26 - 33 of 3326 - 33 of 33
map iconMap